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ICHAPTER I

INTRODUCTION

a In the design of an information or data-processing unit, there

are two extremes which may be followed. The first is to design

I enormous versatility (and therefore great complexdty) into the data

i processing unit. The other extreme is to design a data-processing

unit to handle only a restricted class of input signals (thereby re-

I ducing complexity and increasing data handling speed). In such a case

the sensor must be adjusted so that only this class of signals is present.

A typical class of signals might consist of voltages between zero and

I one volt. For example, if the sensor is an optical one, then for overall

I accuracy, the sensor output must be relatively independent of ambient

light conditions. This of course implies an automatic control of ampli-

I fier gain or lens opening so that the signal will fall between prescribed

g bounds. In the case of a radar system when one changes receiver gain,

one should also modify pulse width and I. F. amplifier pass band in

I order to make optimum usage of the radar system. Otherwise noise

I may dominate in areas of small return or resolution may be impaired

in regions of large return,

I In general, an adaptive control system is needed at the sensor

to maintain the sensor output within allowable limits if the data-

processing unit is to be effective. Before such adaptive systems can

I
I1
I
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be adequately designed for use in the applications mentioned above, it 1
is necessary that analysis methods, and ultimately, synthesis methods,,

be developed for these systems. The remainder of this report contains I
the development of analysis methods for a class of adantive control

systems. This class of systems is versatile enough that applications

similar to the one above may be realized. A relatively simple system

is used as an example throughout this report.

I
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CHAPTERII

ADAPTIVE CONTROL

What is Adaptive Control?

The term adaptive control has been defined.in many ways by many

people. Webster defines adaptive as showing properties of making

suitable; fitting; adjusting; control as to exercise directing, guiding,

or restraining power over, or any device which performs the above. 5

Another version of the definition is a system which can determine its

performance equations and the effect of its environment in sufficient

detail that some performance criterion shall always be optimum in

spite of arbitrary variations in the effect of the environment.

Finally an adaptive control system may be defined as a control sys-

tem which is inherently capable of maintaining a desired performance

in the presence of a changing environment. 7 There are, of course,

many other definitions, each of which is correct in the sense that

jthere is at this writing no accepted standard. Furthermore, there

exist presently many names for these systems: adaptive, self-

optimizing, self-adjusting, and supervisory control systems, to name

a few. Of these, the most descriptive seems to be supervisory, since

that term best describes the operation of adjusting parameter values

according to a performance criterion. The most popular, however,

seems to be the term adaptive. The popularity of the word adaptive

is enhanced to some extent by the relatively new field of bionics and

3
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by the desire of some to identify the operation of this type of system I
with the performance of certain tasks by humans in which the human

adapts himself to a varying environment. It is felt that this identifi- I
cation is a good one; it has been the policy of the author and his

associates to study the human in order to learn from his remarkable r
adaptive capabilities how to construct better adaptive control., systems.

The definition of the term adaptive control appears to be best

stated as accombination of several definitions. That is, an adaptive

control system is any system that adjusts its operating character-

istics or internal parameters in such a manner that some performance

criterion is optimized in the presence of a changing environment.

Here the term environment is broadened to include physical environ-

ment, e.g., the air density in the vicinity of an airplane; disturb-

ances, e.g., air turbulence in the vicinity of an airplane; and a

statistical change at the system input, e.g.., a shift in the mean

frequency of Gaussian noise at the input.

How Does Adaptive Control Work?

There are several modes of system operation that fall into the

broad classification of adaptive control. As stated before, however,

all types of operation include a performance criterion which is to be

optimized. One approach is to consider the system from a transient

response point of view, applying a test signal to the input of the I

1
I
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,i system. Here the adjusted system is given a step or impulse input

[periodically, and its output is measured in terms of error squared,

overshoot, settling time, or some other transient response measure,

Iincluding comparison with the response of a model system. Then,

Ibased upon this measure, the system is adjusted to optimize the

criterion (i.e., minimize settling time).

I Another method is to perturb or dither a parameter and sense

Ithe effect of this perturbation. Again, this effect can be measured by

comparing the output of the adjusted system to that of a model system

and adjusting the parameter to reduce the difference (i.e., minimize

Ithe square of the error between the two outputs) This perturbation

may be sinusoidal, random, step-wise discontinuous, etc.

Examples

[Under the definition previously stated, several examples of

1adaptive control systems may be mentioned. In 1955, an optimizing

servomechanism was built at the Ohio State University which could

locate extrema on a slotted line.9 In 1957, the University of Cali-

fornia reported on in-flight evaluation of aerodynamic parameters

by means of programmed disturbances. 0 In 1960, a system similar

to the one analyzed herein was built at the Ohio State University to

measure parameters of the human in a tracking task. Here, the

parameter was varied sinusoidally. Certain industries, the
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petroleum industries specifically, are using adaptive control systems

in their refineries to optimize system operation in order to maxi-

mize dollars profit! Thus it is not necessary that a system variable

in the ordinary sense be used as a performance criterion.

When is Adaptive Control Advantageous?

This question may appear trivial, since it would seem that in

most applications involving control systems, the most sophisticated

system (i.e., the adaptive system) should give the best performance.

This, however, is not the case. If, for example, the input to a sys-

tem is a known function of time, the best response is found when

using a cam arrangement between input and output. Here there is

zero error. If the input is random but stationary, then the best sys-
12

tem is a linear one providing the criterion for the system response

falls into the usual classification. That is, the output must be a

linear function of the input, and the performance criterion must be

minimum rms error. If, however, the environrment(in the broad

sense) changes with time,, then, and only then, can an adaptive L

control system be used to advantage.

Nature of the Adaptive Control

System in this Study

The system considered in this paper is the one previously

described in terms of parameter dither where, in this case,

sinusoidal dither is used. In particular, two systems in this class
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I, are considered. The first system considered is the "slow" system.

The term slow is used for the following reasons: the dither frequency

is much smaller than the mean frequencies of the input signal and

Ithe responses of the adjusted and model systems are fast compared

I with the adaptive loop, so that the primary system can be considered

to be in the steady state at all times during the adaption process. In

I the second case, the "fast" system is so named because the dither

Ifrequency is large with respect to the mean frequencies of the input,

and the response of the adjusted system is dependent upon past pa-

Irameter variations. The system operation is designed as follows:

IThe difference in outputs of the model and adjusted system is squared

and forced to zero. This is the performance criterion for both the

I slow and fast systems. To effect this forcing to zero, the average

value of the adjusted parameter is driven in a direction so that the

error squared is decreased. The operation of the two types is

-- analyzed for the case of an input which is random in nature. The

input is obtained by filtering a square wave with Poisson-distributed

zero crossings. The mean frequency of the inpat is near one cycle

per second. The remainder of this paper contains the analyses

described.

J
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CHAPTER Ill

THE SLOW SYSTEM WITH SMALL INITIAL ERROR

In this chapter, the operation of the slow system, shown in

Figure 1, will be analyzed. The slow system is characterized by the I

E~)G~w Squaring EX Phase 62Devaing e Sensitive
Deic Detectori

Average Value
ParameterOf Parameter
Dither Dither

Generator

Fig. 1. Block diagram of the slow system.

fact that the parameter variation is sufficiently slow that the adjusted

system is essentially in the steady state during the adaption process.

The solution here is presented for the case in which the parameter

ao, the steady state gain of the adjusted system is varied. This

example is selected as being representative of this type of system,

although any of the system parameters can be adjusted similarly.

Because of the nature of the slow system, the results here are de-

terministic rather than probabalistic since the solution has been

derived on the basis of expected values of the signal in the adaptive I
loop., neglecting all statistical fluctuations. I

8
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IIn Figure 1, Go(jw) is the transfer function of the model sys-

I term while G(jw) is the transfer function of the system being adjusted.

Consider the model system to have the transfer function

I GOW)= -azw + Ja1 + ao

where ails are constants. If an adaptive system is operated in

parallel with the model system, the difference between the system

I outputs, e, provides a signal suitable for the adaptive system's

operating criterion. The transfer function of the adjusted system

has the form

G(jw) 2) -a 2 w + jaw + ao + 6(t) + b, cos 1 t

where the ails are the same as those in Go, 6(t) is a small deviation

I about ao, and bi cos wt is a dither signal added to the terms ao+6(t).

IThe systems will be driven by x(t), a random function of time having

the form1

x(t) an] e

[n]

where the n's are irrational numbers so that one and only one exists

between two adjacent integers.

1[
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The dither frequency wl is much less than the mean frequency* I
of the input signal x(t) in the so-called 'slow" system. The slow

system is characterized by another condition, namely, that the I
dither frequency is low with respect to the average signal frequency !

and it may be assumed that the only signal passing through the phase

sensitive detector is a d-c term corresponding to the magnitude of

the error squared term at the dither frequency. The statistical

type fluctuations at the output of this detector are attenuated by the

low-pass filter following this detector. As shown in Figure 1, the

difference in output of the two systems, C., is squared and passed

through the phase sensitive detector. The component of the squared

signal at frequency wl, the dither frequency, is denoted as 9 l . The

criterion assumed for the adaptive process is that of adjusting a o +

5(t) so as tu force E2 1 to zero. The technique for analyzing the

operation of this system is represented by the block diagram in

Figure 2. This technique is an expansion of the system shown in

Figure 1. One approximation is introduced in that components at

frequency wo t 2w,1 and higher are neglected as indicated. The

*Here mean frequency is defined in the sense r

0 W I i )dw where §i(w) is the power density

So ' spectrum of the input.

0

I
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modulator blocks z shown in Figure 2 introduce the time-varying

Iportion of the total signal due to the dithering of the parameter ao .The

total output is the sum of the outputs labeled * Yi Yz+ and Y2_ as

shown in Figure Z.

1E G(jwl G j(...h)]:

IE G(jca) Modulator Neglected

E G(jw) G[J(w-.)]jb-

Y+ Output

Fig. 2. Alternative representation of the

system shown in Figure 1.

I Assuming that the input x contains only the frequency W, it may be

Irepresented in complex form as X(jw). Then the adaptive system may

be represented as shown in Figure Z. The modulator blocks multiply

their input signals by bi (ejWl t + e-jW, t) where b, is small. Again,

capital letters are used to represent complex quantities.

*

The following subscript convention is used: a plus (+) subscript indi-
cates that the term is a function of its regular argument +wl . E. g.,
Yz+ = Y? (W + Wl ). The negative sign means the opposite.

The complex notation used herein is written so that the physical

signal or signal component x(t) is obtained from the complex represent-
ation X of the signal as follows:

x(t) = X e + X e

,1
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From Figure 2, the relation between E and X may be written by

inspection.

(3-1) E = X+ E bi2 G(JA) [ G(j(w + wz)) + G(j((w- ))]

Rearranging terms in Eq. (3-1), 1
(3-2) E = X

l-biZ G(G++GG)

Now writing Yj,, Y2+ , and Yz- in terms of the input and the gains.,

(3-3) Y= EG = XG I
1-b 2 G(G++G_)

j, t b, XGG+e j t

(3-4) Y+ -Yt h, G+ a
1I- b,2 G(G+ + G-)

jw•t bi X GG- e~

(3-5) YZ. YJ , G_•e = l-b, 2 G(G++G_.)

If the same type of notation is used the output of the model system may

be written

(3-6) Y = X Go(jw ) = X G o  [m

In terms of Eqs. (3-3) through (3-6) 1.
(3-7) =Y + Y- + (- Y M) I

1
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or XiG + bi GG+ eej i t + b GG e j t - GO(l - b G(G+ + G))]

I (3-8) 
lbz G (G++ G_)

Now assuming that terms involving bj may be neglected, Eq. (3-8)

I reduces to

(3-9.) = X (G - Go + bi GG+ ejW t+ bj GG. e JW t

It can be seen from Figure 1 that the signal now passes through the

squaring device and then the phase sensitive detector. These two phys-

I ical operations correspond mathematically to squaring 6 and retaining

only those terms at frequency wi • Prior to the squaring, however, the

expression for e will be modified to represent the signal due to the

random input x, and then simplified. In terms of the random input

[variable x.,

(3-10) a[n ] ejn [ G(jnA)-Go(jnA) +bl G(jn&)G(j(nA +l ))e j I t

n

+bj G(jn&)G(j(nA -w,,,))e 1.

Here f is the real signal.

Henceforth the brackets will be omitted from [n] with the

1This corresponds to opening the feedback loops shown in Figure 2.

!
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understanding that when n is used as an index, it refers to the nearest I
integer to n. I

Consider foi the moment only the term G-G o from Eq. (3-10)

1 1
(3-11) G-G0 =11

oG- 0 z + jaiw + 6  
-az A2 +ao+ jajW

If one makes the approximation =I- 1-6 when 6 <<i and since 6
1+6

is a small deviation of ao about equilibrium, ,

(3-12) G-G 1' - 6 Go 2

The conditions for which Eq. (3-12) is valid are described in Appendix

II. Now consider the product G(jw) G(j(w * wl )). This product is

written at length as

(3-13) CGjw) qj(w * w, ) ) = 1 + j
-az + ao+ jail0+6

1

-a 2 (w * wl) 2 + ao+ ja, (w* wi)+ 6

If one uses the same simplification as above.,

(3 .I4) G(jw) G(j (w 1 ) ) Go (j)(1 - 6 Go(JO) )X

X G°(J(w*wl ))(1" 6 G°(j(w* ))) I

I
I I
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i Now if terms in 62 are dropped,

(3-15) G(jw) G(j (w + w, ) ) Go (j) Go (j (w * w ))x

I x (I-6(G (jW) + Go0 (j W * 1)))).

I Substituting Eqs. (3-12) and (3-14) into Eq. (3-10) results in

(3-16) E= an e jnAt[ -6 GO + bi G O Go+ ('1- 6(Go+Go+)) ejW03t

n

+ bi GoGo (I- 6(Go +G o )) 01 t ]

Now Eq. (3-16) will be squared so as to retain only those terms at

I frequency w, . Furthermore, in squaring the summation, only terms
i ej(n+ m)A t

of the form an a m e where n = -m will be retained. Hence,

in each product above, the index n will be used in the first term of

each product and -n with the second. Finally, all terms in 62 will be

I dropped. This part of the error squared will be labeled ez 0

(3-17) ez = anejnA 16 Go -(j nA)) f an ejnAt G(-jnA)

n -n

G ( j(nA -w,)) eJ 0t + bi Go(-jnA)

I Go ( j(nA+ 0 1 ))elJ(0t t

I
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(3-18) e2 : an2 ( 6 IGo b 1 G G ejW t+ G G+ * I
nI

Now if the discrete sum is replaced by an infinite integral, 6 2 may 1
be written as

COT

(3-19) £2o: -06bj t (w)IGoI GoGo...e + Go G* . e! dw. -r

-CO
2|

(w) dw is the continuous equivalent of the infinite sum E an • Here
W, +A

the power contained in one term am 2 is equal to $" (w) dw where

the interval from wl to wl +A includes the mth te rm, namely, m A in

the infinite sum. If it is recalled that this signal is passed through the

• * j(Al t
phase sensitive detector, the term e may be dropped from each

factor in Eq. (3-19). This represents taking the magnitude of the in-

phase term, and will be indicated by the subscript 1 on £2 A

description of the operation of the phase sensitive detector is given in

Appendix I.

Note that the term in the brackets in Eq. (3-19) is real, after the

e *~ terms are dropped. Furthermore, it is equal to twice the real

part of the first term. If one uses this, as well as further simplifica-

tions, the integral in Eq. (3-19) can be reduced. I

(3-20) 2 Re (G 0 Go ) = 2 Re,, 1

i-az ,(A+ao+jaW -a 2 (w=el ), 2 +a o +ja ' (4.-w). I
I
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I Noting that i << , the above expression may be written as

(3-21) 2 Re (GoGo. 2 Re Go a a
f -az + o- al w + D

where D= 2 az w&xA -azwlZ +jalw1 . Thus

(3-22) 2 Re (GoGo*) 2 Re GOGO (1 - D Go )

= 2 Re {Go - (2a2WWI - azwl 2 + j alw,) Go •

I Consider the following:

(3-23) Re [- (ZazXAl -azwl 2 + j ae1) G0

I Re 2 az wl i z i aw
- az Wz + a o j a, w I

I (2 a2 w - a2 2z (-a2 a + ao)- (al e2  )

I (-azw2 +a o )z+(a l w)2

ISince the integral has limits - - to w, the terms in odd powers of W

contribute nothing; Thus Eq. (3-19) becomes

I (3-24) E2,= - 6b O (w) IjG0 ' [1 + a2W2 (-a2W a:)d_(-az w 2 +a a)z +(at w)z

I
With the assumption that 0 (M) = W2 + , the integral can be

I evaluated.

I
I
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(3 -25) 621 = - bb _ B [" a - 2  +a + ja1 w 1 2

+ -a 2 2 W1 2 W + ao a2 u4 2 1 d
(-a? a 2 + ao + jaw) (-a2 W 2 + ao 0_ j al w

Using the integral table in Reference 3, the above expression reduces 4
to

(3-26) C2  - 6bi (Is + 17);

2

and if terms involving w' are neglected,

(3-27) E21 - bi Is

This may be interpreted as follows: The adaptive system will tend to

reduce E to zero; when this is accomplished, 6 above must be zero;

thus the adaptive system becomes identical with the model system.

The next question which arises is that of determining the form of

E 2 ( 6 (t) ) in the case where some or all of the foregoing approxima-

tions are not made.

As can be seen from Eq. (3-16) and those equations immediately

preceding, if no approxdmations are made initially, the final form of

the term E21 will be

EZ = C1 6 + C2 62+ .......

I
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I where the Ci 's are constants and Ci+ i << Ci• Suppose C3 C4 = ... =

Cn=0. Then E2
1 = C1 6+C 2 62

ISetting CZ, = 0 gives

6 = 0 and l - C

Since Cz << C1 , this implies that the error in a is very large.o

But this cannot be, since the previous analysis depends upon 6 being

small. Furthermore, if the adaptive system is stable in the vicinity of

equilibrium or 6 = 0, any deviation from zero will tend to return to

Izero. Once the expression for CZ1 is in the form of Eq. (3-27), it is

possible to conduct a stability analysis for the system by using classiad

nonliftea-r methods, such as the small signal theory for the system

I near equilibrium or other applicable methods. The behavior of the

system for large initial values of 6 (t) will be considered in the next

chapter.

II



CHAPTER IV

THE SLOW SYSTEM WITH LARGE INITIAL ERROR

The previous analysis of the slow system has been done with the

assumption that the initial value.- of' 6(t) is small enough for terms

in 6? to be neglected. As indicated at the end of Chapter III, the

system should be studied for large values of 6, or values away from

equilibrium in order to determine the conditions for instability, if any

exist. The error, 8 before any approximations are made, can be

written as Eq. (3-8) in complex form.

jWi t .jCAjit
X [G+ b, GG+e +1j , GGe G (1+bi 2 G(G++ G_))]

(4-1) =

I - b1
2 G (G++ G-)

Again, assuming that bj is << l and b I GI in all cases is smaller than

unity, the following approximation can be made.

(4-2) X- x [G+ b GG+ej It+ b GGe j *t - Go]

At this point it is desirable to assume values for the constants in

the gain expressions and evaluate the error E . Inserting the summa-

tion expression for x(t), and representing (n A) in the gain expressions

by w , 6 becomes

0
I

1



1 21

(4-3) = a[n] ejnAt1

[n] -azw +a o +jaicw+6 -azw 2 +a o + jaL

+ bi [ 1:" t
l az w2 + ao+ jai w +6 -a2 (w + wl )z+ao + jai (w +w, ) + 6

+b 1 [ 1 ) j6 t

-a2 wz +a.+ jail w+6 -a2 (w - ) )z+ ao+ jai (w-wl)+6I
The brackets on the index [ n] will again be omitted. At this point, let

az = al aO = 1.

(4-4) c= an • "n+t
-_W' + l + jW +6 - + 1I+ je

n

+ b1 .1 ejW t

W +b 1  - W+ l+j+ 6 -(W+W,)Z+ + j (e+l])+ 6

W+ e +  j +6 -(W - W, )z + I + j (W - W, )+bl 2e W t]

To simplify the analysis,it is expedient to square 6 at this time,

neglecting all terms at frequencies other than w, . Note that in the

.- squaring operation, the right-hand member of each product will appear

1as complex conjugates as in Chapter III. Again, this term will be

denoted by the subscript 1.I
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I(4-5) anl = 1n

wz+ + 6 +,jw _W2 + 1+ jWn

[(bi 2r
-W _+ 1+ jw -(W +wi )z+ 1+ -j (w +wi W,

+ (bi 1I
+W 1 + 1 + 6 -jw - (-w + WI)z+ 1 + 6 - jw - W,

*jWI t

Note that the e terms have been omitted; this is a result of

passing these terms through the phase sensitive detector (see Appendix

I). Now from this

(4-6) 2i = [ a 2  1
L ('wz + 1 + 6 jw) (-w z + 1 + jw)

{ b-

(-2 + 1+ 6 - jw)(- (w +'W ) + +6 -j (w + w)

+ (-w 2 + +6 b -(w-wf) J [

I
I

[
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=1n _ + WIz(W+I + jw(( 1) 1 W+W

+ 1 ( -6bi
+ I-W +1+5+jw _- U-  + 1+ i )( _- (W W, )2+ 1+6 - j (W _ W,)

I
[ (4-8) = an 2 - 2 ( - j

n

1 1
1_W 2 + + jW) (- (W + Wz + I + 6 -j 1(W + i ) :

+
l-2+ 1+ jI)-(W _ W 2+ 1+ 6 j w- w )

I It will be assumed in the following equations that wl is sufficiently

small for i 2 terms to be neglected.

Expanding the fractions in brackets and combining gives

I

(-w? + 1+ jw)(-wz -2 ww, + 1+ 6 - jw - jwl)

+11
.. (_w 2 +l+jw)(_ 2 +2 1 +l+6- j +j~i)

I
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1

Factoring out 1 +

(4-9) Brackets = w 8 = 2 K.l -W-,z + J 1 + +W 1+ j - 2

+~7 +-_I_ j1
+

-W + I + jW) + _W2 +I -

Upon rewriting E 21 , one can write Eq. (4-9) as

Z- 6b, I
(4-10) an = n-

-+ I+j 14 WWI j (.11+ T
-W + I-j

+ 6 + 2 WW + j W,

- + I1 jo

If the fractions in the brackets are rationalized,

._ -2-+ I1- jW -WZ +l-jW
-WZ + 1 - jW +6 WWI j( _ - + 1 2 WWI + j I

- +
(-WZ + j ) (-WZ +1- jW + 6 - WZ +1- jw + 6)

(-W 2+ 1- jW + 6 -W2 -jW)(-Wz + 1-jW +6 + 2 WWI + jW1 ))

(- -+ -jw) 2 (-wz + I - jW + 6 [l

= '(_wZ (+ 1 -j + 6)2 - (2 WW + jW1 ) 2 1

!
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I Therefore

(4-11) E 1  = L an . .b... ... ........ . . . .... ..

_2I +1+ jW 4  (-Z+l j + 6)Z-(2 +jW)Z

If W << Waverage , the terms in wl can be neglected with respect to

the others in the denominator of the expression in brackets,

n(4-12) e', a 1+ j2 4  _Wz+ I j

n 1- _W2 j 4 -)lj~6I
Note that this reduces to the expression derived in the previous chapter

when the approximation of 6 small is used if the approximation of

neglecting w, Z is applied to Eq. (3-20) and those that follow.

Replacing the discrete summation by the equivalent continuous

I form, Eq. (4-12) may be written

(4-13) 2 6 = - 2§b (w) +d::+l•

II ?+ l+ jw14  + 1 jw + 6

1This may also be evaluated by using the technique mentioned in the

previous chapter. In this case, however, the 6 term appears in the

-- denominator and it must be expanded in order to see how the function

behaves in terms of 6. First, one must rationalize the expression in

Eq. (4-13) above.

I
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(4-14) e 2 = - 261,i I(w) (-W 2 + 1 - jw)(-w 2 + 1 + 6-j)

(4-15) z I =- 6bl 1 1 1 1bi
_ P + jw - jco (-W2 +1+ jw)Z (-.?'+l-jw)' I

4 z
- (2 + 6) - 6 j+ 1+ 6
2 2 d(_ W + 1 + 6 + jw )(_-w + 1 + 6 - .jw)

The format of the integral as given in Reference 3 is

i Go c n - I  + ... + c 210 n-i 0

(4-16) n 2i d sn+...+d d

_1o n o

The terms in the expression found in Reference 3 are equated to

the terms of Eq. (4-15) as shown in Table I.

TABLE 1

EVALUATION OF TERMS

d7 = 1
d 6 = + (3 + P)

ds = + (6 + 3P + 6)
d4 =(7+6P+26+P6)
d3 = + (6 + 7P + 36 + 2P6)
d2 = (3 + 6P + 26 + 3P6)
dl = (1+ 3P + 6 + 2P6)
do = P (I+ 6)

2 C4 c o - 2 c 3 c1 + c 2 2 1
2 c? c o - cl 2 = 2 + 6 [
c 2 =1+6

0 I

I
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1 The important feature is not the exact expression for C21 but

rather the form of the expression in terms of 6 .

i The data in Table 2 show the highest and lowest power of 6 in each

term of the evaluation in I7 •

I TABLE 2

POWERS OF 6 IN NUMERATORAND DENOMINATOR

Term Highest power of 6 Lowest power of 6

mo 5 0

m2 4 0
m3 4 0
Mn4  4 0
M 5 4 0
M6 4 0
C 0 m6  5 01 (Cl 2 - 2 cI c 3 + 2COC4 M4  5 067 6 0

1Then, the form of E21 becomes

(4-17) £21... b 16[ko + k 6+ kz 67 + k3 63+ k4 64+ k5s6 ]

co + c16+ 2 62 + C3 
3 c 4 6'+c 5 

5 -c66

where the c i ' s and ki's are constants. Thus, for 6 << 1, as in

Chapter III, E2 I becomes a linear function of 6 ; while for 6 large, so

that 65 >> 64 E2 becomes essentially independent of 6. Again, as in

Chapter III, this form for E is suited to doing a stability analysis

using conventional nonlinear techniques.

I



CHAPTER V

THE FAST SYSTEM WITH SMALL INITIAL ERROR

One of the goals in every analysis of an adaptive control system

is the determination of the variation of the adjusted parameter about

its optimum value. It is tempting in the study of these variations

simply to approximate the spectrum at the output of the criterion

detector on the basis that the adaptive or supervisory loop is opened

and on the assumption that no parameter variations occur. This as-

sumption, although it is often valid as the first step of an iterative

determination of nonlinear system characteristics, often leads to a

contradiction in adaptive system analysis which must be resolved.

This contradiction arises as follows: it is assumed that the adaptive

process adjusts itself so that the average value of the parameter

error is zero or at least near zero. Yet the spectrum of the fluctua-

tion of this parameter about its average value (called hunting loss) ,

if calculated on the basis of the assumption just outlined, may well be

infinite at zero frequency indicating not only a large and very slow

variation of the parameter about its average value, but also the

possibility of a large average deviation from the desired value. This

apparent contradiction cannot be resolved by successive iterations and

2[
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it must be concluded either that the system does not adapt, or that theI *

methodology employed has limitations.

The latter conclusion is the case. In this chapter, the assumptions

and constraints which defined the slow system will be dropped and a

technique will be developed which will allow the determination of the

spectrum of the signals in the supervisory section of the adaptive

system under consideration. The same technique leads to a represen-

tation which can be used to determine the stability of the adaptive

j system.

In this chapter, an analysis of the fast system will be made. The

input to the system is again the random function of time given by

I 5n~

s- x (t) = a[n] e•n~

I [n]

I where n is almost but not quite an integer and [n] is the nearest

integer. The block diagram of this system is shown in Figure 3. The

Ianalysis will be carried out on the basis of observing only one fre -

quency component of the total signal as it traverses the system. If the

If the transfer function of the adaptive loop does not have a pole
or poles on the imaginary axis, the iterative technique mentioned
above may be satisfactory.

As in earlier chapters, the brackets on the indices will be omitted.

I
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expression for one component can be developed, then the expression

for the total signal may be found by generalizing the procedure for all

frequencies present. Before the mathematical analysis of this system I
is made, a description of the method of analysis will be given in order 1
to justify this approach to the problem.

In this analysis, the system is assumed to be at equilibrium so

that the integrator output has an average value of zero. Note that the

model system and the adjusted system are shown as identical, except

that the adjusted system has a separate feedback path through the

multiplier (Figure 3). This is equivalent to stating that the constant

a is being dithered, and is at its equilibrium value, as previously

mentioned.

Model System

Adjusted System +. Device

, , Deeteetor

Parameter C -

Deviation Parameter
Dither Dither

Generator --

Fig. 3. Block diagram of the fast systern •

[
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Consider now a portion of the total signal appearinig at point A.

Let this portion of the total signal be at frequency W * As this signal1.
passes through the system, it will produce a correction term at point

I A which will be at the same frequency, wa*

This correction term , produced by the original signal at wa' is

the only signal in the system which is coherent with the original WaI
term. The analysis will be carried out on the basis that the total

Ioutput of the squaring device can be represented as shown in Figure 4.

Correction
ITerms

I +

I Original Total
Signal Signal

I. Fig. 4. Block diagram of the analysis method.

1 Here the one input to the differential is that part of the signal which

would exist if the loop were opened at B (Figure 3). The second input

is the correction term produced by the original component after the

loop is closed. Thus the output is the total signal at frequency Wa

If the phase sensitive detector is opened at point B (Figure 3)

There are in fact other signals present. However, those signals are
not at the frequency wa and do not add coherently and are therefore
neglected in the analysis to follow.

II
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then the only signal at point C is that due to the product of the dither

and the output of the adjusted system. Under this condition, the circuit

can be opened at point C and a generator inserted having an output

(5-2) Egen b, n ((nA+wl )tj(n& - t)
jnAt

where bl is the amplitude of the dither and the summation Cne
n

represents the output of the adjusted system. Note that this is the

same approximation which was used in Chapter III when terms involvig

b2 were dropped. Since b, will be assumed to be small enough so

that bl terms may be neglected, this is equivalent to restricting the

above signal to one traversal of the adjusted system-multiplier loop.

This assumption will be preserved with the circuit closed at point B.

Consider a signal at point A having the form

j wal t
(5-3) "a" = al •

(The notation "a" will be used in tracing this signal through the

system. ) At the output of the phase sensitive detector,
j(wal + wi)t j(woal- w,))

(5-4) "a" = al ( + t)

At the output of the integrator,

j(1 +w, )t j(wal - w, )t

(55) a =a, (j(wa, +w,+ j (wal - a i



{

1 33
I, At the output of the multiplier, this signal is equal to

I (5-6) "a" = Z Cn e j nA tE (b it + e-jW1 t

I
+W, )t e('a-

Yjwai +CO1) j(Wal W

I
Here Z Cne j n A t is the representation for the output signal of the ad-

I justed system (Figure 3).

Now as this signal combines with the input and is passed through

the adjusted system block, each term is multiplied by a gain at the

Iappropriate frequency. Furthermore, these are the only terms which

Ican contribute coherently at the output of the detector to the original

signal at frequency wal . The sign change in Eq. (5-6) is a result of

the amplifier and necessary for system stability.

The output of the differential (difference in outputs of the two

systems) contains only the wa terms since terms due to the input

signal and at input signal frequencies exactly cancel at equilibrium.

Thus the signal may be written

..

I
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I
(5-7) "a" = bi I Cn G ((nA + w)

n
(j~ ~~n - wI A+l+ lt

+ IC n a G (n& +a - l •i

nj, (w, + Wal)

Cn aL G ((nA + wal -( J(n&+wa l)t

n j (Wal -WI)

Note that the latter two summations represent only that portion of C

due to a single term in the output of the square law detectbr.. Finally

consider the signal as it is passed through the squaring device. Here

only those terms which combine and produce a signal at frequency Wa

will be retained.

To find theme termm, it is necessary in each of the products that

if index +n im used on one term of the product, (-n) must be used on

the other. Therefore

(5-8) fail G a, G(j(n1A+w +wal )) Cnba ejwa1 t

n G(-jn-L -n 'Jii j (Wai + w1 )

-a, GOjInA -w1 +wal )) Cnbz. wa

nG(-jnA+jwl W W
nal 1I

1[
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1Finally, since the above expression rapresents the correction terms,

and all terms are at frequency wal . the magnitudes of these terms

may be equated giving

I
15.91a -~a [C_n G (-jnA -jw ) G ( (nA +wl + wal1 Cn]

n (al + w,

+ [Cn G(-jnA + jwl)G(j(nA-w +al))CnI a
n i (wal - w )

m where al0 is the uncorrected magnitude of the original signal and al

the first order approximation to the total magnitude. Now the magni -

tude of al may be found, assuming that the expression in the brackets

Iabove is a transfer function and solving for al from Eq. (5-9)

(5-10) al = alo + b, 1
(Wal + W1 )

n

i
j wa( - w)

Furthermore, stability of the system may be studied by considering

the homogeneous equation
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(5-i.) a, bj n 2 G jn- , o)G(j (nA + + wal

i (wal + w1 )

C 2 G (-jnA + jwi) G ( (lA -w + wal) '
n

+ =0
S(Wal " -

and making an equivalent Nyquist plot for this system. In general,

once the analysis of the system has been carried to the point of Eq.

(5-9), conventional techniques may be used to analyze system behavior.

The fact that an infinite summation occurs and the implication that a

digital computer analysis must, in general, be used, does not alter

the fact that the conventional techniques are applicable. Furthermore

these summations can be converted to integral form and in theory

these integrals can be evaluated exactly. However, the evaluation is

ext remoly time - consuming and tedious.

Finally, it should be pointed out that if noise is present in the

system, it can be handeled in precisely the same manner; that is, one

must trace each component as it traverses the system and then sum

these to find their total effect. If it is desired to find the spectrum

of the output of the squaring device, this too can be approximated by

conventional techniques applied to the signal as expressed in Eq. (5-10),.

and iterations based upon this same technique will improve the accur-l.m

[I
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I CHAPTER VI

I ANALOG COMPUTER SOLUTION

I This chapter is the description of an analog computer solution of

the problem considered in Chapters III and IV. Figure 5 is an analog

Icomputer diagram of the system under observation. The variables

Iare indicated on this computer diagram. To augment the conclusions

reached in ChaptersIII and IV, four separate types of runs were made

Iwith this system. First, the system was allowed to adapt for the case

Ithat 6 (t) at t = 0 was a small positive constant. The second run was

for the case 6 (t) at t = 0 equal to a small negative constant. Figureq

1 6 and 7 show typical response curves for these two cases. The two

I curves shown on each figure are EZ and 6(t) versus cycles of the

dither frequency.

Figures 6 and 7 show the manner in which 6 (t) is adjusted(Otthlis

1 case, to zero) when its initial value is small. The time scale here

has been compressed so that the response of the adaptive system may

look to be faster than it really is. The parameters used for this case

were a O = a, = a2 = 1 , w, = 0.2 radians per second, and x(t) a

random signal with average frequency of about 1 cycle per second.

Figure 8 (a) shows the results in the case when the same system

as used for Figures 6 and 7 is allowed to adjust with a 6 (t) at t = 0

equal to nearly unity (100 volts is one machine unit on the analog

37
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computer). It is signifi.cant that in five cycles of dither, the value of

6 (t) is not significantly changed. This experimental observation sup.-

ports the conclusion reached in Chapter III that when 6 (t) is initially

large, the error squared (e 21) is essentially independent of 6 (t). If,

by chance, through saturation of analog computer components, etc,

the value of 6(t) decreases to some value that is small (1 (t) I <<

'-az w + j ai + ao), then from that point on, 6(t) will approach

zero as before.

Figure 8 (b) shows the behavior of 6 (t) if, together with the large

initial value of 6 (t), bi , the dither amplitude, is increased by a

factor of four. The effect is that of increasing the dither to the point

where the component of E I at the dither frequency is now signifi-

cant with respect to the total error. Note that in this case the value

of 6 (t) drops to a small value during the first cycle of dither and

thereafter oscillates about zero with a fairly large amplitude. This

is a result of the fact that the component of E 2 at the dither fre-

quency is now much larger than the error squared term, due to the

input signal alone , and therefore predominates in the adaptive

process. Although this situation has served to demonstrate a result

of the analysis in Chapters III and IV, it is not satisfactory in general

to allow the amplitude of the dither to be large with respect to the

input signal. [
One effective means of treating large initial values of 6 (t) is



I4.1
that of starting the adaptive process with large values of dither and

then reducing the dither amplitude accordingly as 6 (t) approaches

Izero.
To verify the conclusion made earlier that for large initial

values of error, the system error squared is independent of the

value of 6 (t), the following experiment was performed: The circuit

I was opened at the output of the squaring device and this error squared

was integrated over a constant time interval for different initial

i values of 6 (t). The results are shown in graphical form in Figure 9.

Note that as 6 becomes larger than 2 (a relative value) the integral

of error squared does in fact become independent of the amount of

Ierror, 6. This substantiates the conclusion reached at the end of

I, Chapte r IV.

I[
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1i CHAPTER VII

I CONCLUSIONS

The material presented so far has consisted of the development

of analysis methods and their application to a class of adaptive control

I systems. The anlysis of the slow system (Chapters III and IV) is

relatively easy to perform, both because of the nature of the system

and because of the resulting simplifications which can be made. In

I the analysis of the fast system, however, these assumptions are not

applicable, and, for this reason, the analysis method used in Chapter V

was devised. The analysis methods presented here are adequately

suited to this class of adaptive control systems with respect to

I specifying the nature of the error signal (the performance criterion).

Once this error signal is specified, conventional techniques may be

used to evaluate system stability and performance.

IAdaptive control systems have many varied applications. The

-- slow system has been used to advantage in the determination of human
'" 11

parameters. Here the model system was a human operator and the

adjusted system was an analog computer representation of the human

operator. The adaptive or supervisory loop adjusted the parameters

in the analog computer to match those of the human, thus, in effect,

measuring the human parameters. In an application of the fast

14
system , radome error in an air - to - air system was

I45
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essentially cancelled by an adaptive control system in a small

fraction of the flight time of the missile, improving missile per-

formance greatly. This latter application does not belong strictly

to the class studied in this paper, since its operation is dependent

upon a sinusoidal test signal at the system input. Although both

classes of adaptive systems have many applications, it is felt that the

class considered in this paper is more versatile, in general. Other

examples of applications of adaptive control may be listed as follows:

The fast system could be used to optimize the bandwidth of the i-f

section of a receiver based upon the maximization of the signal-to-

noise ratio. Another example, which is in use at the present time,

is an adaptive system that adjusts the gain of an automatic pilot

system as a function of altitude and other environmental factors.

Again, this latter application belongs to the class of systems having

external test signals applied to the input.

Although adaptive control systems are built and used widely,

th.ere is still little known about synthesis procedures. The most

common and perhaps the best synthesis tool today is the analog

computer simulation. As systems become more complex, however,

it is felt that the analog computer simulation will not be adequate for

systems with large input signals or large parameter errors. It has

been this author's experience that the slow system simulation, [
discussed in Chapter VII, will adapt even when the initial value of

I
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the gain parameter a + 6 (t) is negative. This, however, may be

due to limiting or saturation or both in the analog computer, and

mathematical techniques to handle cases of this type would certainly

be desirable. When adaptive systems were first conbidered, it was

thought by many that all the problems in the automatic controls field

would be magically solved. However, this was certainly not the case;

in fact, a host of new problems arose. Among these were the question

of stability of the supervisory loop, the effect of dither signals upon

the performance of the primary system, and others. Futhermore,

there arose the question of specifying a performance criterion for

adaptive systems. Although the supervisory loop operates on the basis

of its own performance.criterior), as soon as the system is in equilibrium,

this criterion no longer exists. With this in mind, it is thought that

the hunting loss as defined in the introductory paragraphs of Chapter V

Iis an adequate criterion by which the performance of the adaptive system

7- can be evaluated.

As more is learned about the analysis of these adaptive systems,

it is felt that broad synthesis techniques will evolve. Until that time,

however, the analog computer must be used, and new and better analysis

techniques must be developed.I
I
I



APPENDIX I

MATHEMATICS OF THE PHASE SENSITIVE DETECTOR

In the phase sensitive detector (Chapters III, IV, and V) the two

input signals El and E2 are merely multiplied together to give E0

Here El is the square of a signal involving frequencies w, w + wl

andw -w . Let El be given by

(Al-i) El = (al e j t + a_1 e -jWt+ a2 ej(W+1 )t + a 2 *-j(w+wi)t

+ a3 e j(W-W 1)t + a-3 ej(W-Wl)t )2

where wi < < w. Now writing El at length, omitting all frequencies of

2w - Zw1 and higher,

-jwi t 3W1 t
(Al-2) El = al a-1 + al a-z e + al a-3 e

+ .. 2  
3  t -i i t-2 ,t

+ a-1 a2 e j + a-i a3 e + az a-? +az a- e

+ a3 a.3 + a- 2 a3 e-j2w t

If this signal is now passed through the phase sensitive detector, the

d. c. term of the output E. will be given by the d. c. part of the

iwi t -iWi t
product of El and (e t+ e

(Al-3) Eo(dc) = ai a-z + ai a. 3 + a-1 az + a.1 a3

48
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I This is essentially the product of the (w - wi) frequency terms by

the (-w+ w) terms, which is exactly the product formed in the earlier

* jW1 t
chapters. Thus, it is valid merely to drop the e from the

I signal cz in the earlier chapters to obtain the expression for the

output of the phase sensitive detector since in the notation used there)

both positive and negative frequencies, corresponding to w w, are

included.

I
I
I
I

I
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APPENDIX II

APPROXIMATIONS IN THE COMPLEX PLANE

In Chapter III, an approximation was made having the form

G - G O  6 Go2
G- 0  -G 0

2

where

1T
-az w2 +ja w+ a o + 6

and

1
0 -a 2 Z + ja 2  + a o

under the restriction that 6 << I a, + jal w - a2 w 2

It is clear that the approximation (for 6 << 1) of - 1 - 6 io1+6

valid when the variables are real; it remains to be shown that the

approximation is valid when it later appears within a contour integral

as shown below.

(2- .) F l)[ G- GoJ d s = F(s)(- 6 G do.

C C

Proving that the above are nearly equal is equivalent to proving the

fol[owing

(A2-2) (s - , s o)(sd sso
C 0o so o C(s-0)

so
50i



If one divides through both sides of the above by 2 7riA s 0 ,then it is

true that

(A2-3) f'i s[ s so= - dso

o C 0 00

7Zri (s So)z
I C

Now if f(s) is analytic within the contour C, the left-hand side of the

above equation is equal to (from the Cauchy Integral Theorem 4)

(A+-g))- f(s) 1 1 1 _ 1 'f(s)ds1A 0 2 7riA a o 0 s o .A o 0 -- a

and the limit as A s o - 0 of the above is

I~ f(s o + A 8o)_- f (s°0)
(AZ-5) lim f, (+0)-.

A so-.0 A s o s/

IBut the right-hand side of the above is given by

I(AZ-6) 1 1 1 f-d-1 ) f(s f()
27TiAs 0  a- so -Ago s-90 2'Z rri (800

0/ c

which also is equal to f' (so).

- It remains to be shown that the approximation is valid when A 0

1.
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is small but non-zero. Consider the difference between the two

integrals

(AZ-7) - so f(s) di- f(s)ds d•
2 iA ao 0 (s - 0- A so)(s - s 0 ) CT7i (B -so)Z

C C

1 $ [(s - sO)-(s- s o -As o )] f (s)ds

27i (s - So)Z (s - so-As o ) T

The right-hand side is written as

(AZ-8) Aso f (s) ds

Zri (S-So) 2 (s-S o -As o )C0

If M is the maximum value of f(s) on C and L is the length of

C, and if do is the shortest distance from so to C and if JAsoj < do

then

( )sf(s) d< ML JAsoj(A2 9)As (a - so)z (s - o- A so) doz  (d o - JA 8ol )

The expression on the right is linear in As o and therefore goes to

zero as As o -W 0 . Now it is important to consider the case in which

the contour C encloses a pole of f(s). It is necessary to show the

effect of the deviation As o upon an integral around a different

contour C"which encloses a pole of f (s) but not s o ,. Now it must be

shown that

!



ZTri As 0  (a- s o -As o  s-s) 2 ri (a - so)zI CC

If f(s) is expanded in partial fraction form, then let the pole which isI
contained in C be a = Ii • Then the above integral may be written as

I
(AZ-ll) 1o 0 _ g d

27 Z i (a So) z  (s - SO)

C

I1 1 1 g~ ) do.
Z7ri A so S - s o -A s -0 a i-mN

iC
The above approximate equation is evaluated, using the residue

i theorem, as

_______ ? 1 ( 1 . 1 -

S('i -oz- A O ii go -Aso "i - So) g("

1or

.. (sz Sol 1 As o -s o z o l s  so •
(A2 -13)1 ?1Am

(21 -8 0)2 A 0 0 (81 go0 -As 0 )(81 -50

Finally

1 ?1
"-(A 2-14) 1(2 -(1i - So) S i z0_ = 2 2 o + S02 -Aso(s - o) ,

i and since 1A 0 1 is small with respect to Is, - ol,

I,
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'54 1
I 1

(A2-15) I(1 - o ) 2 (81 - s)z- a 30(51 - o)j

Thus the two expressions are nearly equal. [
It has been shown that the approximation made in Chapter III is a

valid one when included in a contour integral, first, if the contour

includes only the pole at which the approximation is made (so) and,

second, if the contour includes only a pole of f (s). Since the approxi-

mation is valid for both these cases, it is valid for any arbitrary

contour.

[
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IAPPENDIX III

SNO T A 'T1 ION

The following symbols and notation are used throughout

Ithis pape r

ao, al az •. • - Constants

bl - Dither signal amplitude

Cl , CZ C3  • - ConstantsIComplex representation of the error E

F (s) -A function of the complex variable s

f (s) - A function of the complex variable s

I Go (j) =Go  - Gain of the model system for input of
frequency W.

G (jnA) = G - Gain of the adjusted system for random

inp ut -(M)
G (j (w + wi)) =G+ - Gain of the system for input of frequency

- Gain of the system for input frequency
j[(m + n) A + wi]

i n  - Solution of the integral of the form in
Reference 3

ki, kz , k3 , ... - Constants•
M - A constant

m, n - Numbers which are almost but not quite
equal to the integers [ m], [ n] .
Normally the brackets are omitted when
these numbers are used as integral indices.
The ratio of any two, (e.g., m/n), is an
irrational number. -

x - A random input of the form x =- ane
n

y M - Output of the model system •

y - Output of the adjusted system.

X - Input expressed in complex form

Y - Output expressed in complex form
- The sum over the infinite range of the

1 index - c < n < w •

8 - Small deviation of a parameter about its
average value .

- System error; difference between outputs

of model and adjusted system •
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